الثلاثاء، 22 نوفمبر 2011

Gold starts 2006 well, but this is not a 25-year high!

Saturday, January 14 - 2006 at 11:08
Investors in gold saw the yellow metal soar to $557 an ounce in the first two weeks of 2006, and in nominal terms gold has not been this high for 25 years. But if you adjust for consumer price inflation over the past 25 years, gold is still lower than the $1,400 an ounce it was worth in 1981 in 2006 dollars.

Article continues below ▼

Related stories
Financial Planning RSS feed
Where next for global real estate?
Is this the last great buying opportunity for gold?
Where next for the Doha, Dubai and Abu Dhabi bourses?
Black clouds gather over US equities
Markets looking for a reason to sell-off!
How will Middle East equities perform in 2006?
The inverted yield curve is surely a warning for equity investors
Investing in gold 2006; Part Two: exploration companies
Investing in gold 2006: Part One
Where to invest in 2006: going for gold again?
» more Financial Planning news
It is understandable that investors might become a little concerned at news of a 25-year high in any asset. However, in the case of gold this is just about the most misleading statement that you can make.

The first way to approach this is to turn this statement on its head. How remarkable that gold is selling today for what it cost 25 years ago! Should it gold not have risen in value along with just about any other asset or service that you care to think of?

Then you can make an adjustment for inflation which has raged over the past 25 years. The wage packet of a new graduate has quadrupled in this period, for example, and house prices have risen by a higher factor than that.

Gold cheap in real terms


Even if we take consumer price inflation as an index, and most statisticians agree that it understates inflation, then the gold price today should be $1,400 an ounce just to equal where it stood 25 years ago in real terms. Or if we adjust to the money supply growth, which is perhaps more relevant to gold, then we get $2,300 an ounce.

Now we can begin to understand the potential upside for gold. The previous record price for gold was $850 an ounce in 1980, that translates into $2,200 on the CPI and $3,500 adjusted to the money supply.

There is no other major asset class where such a massive undervaluation exists. Gold needs to more than double or even quadruple to regain its 25-year high in real terms, it is not there yet.

Upside potential


The upside is also clearly much higher if gold is to retrace its previous price movement. Many of the circumstances that drove gold higher in the 1970s are present today: fear of inflation, higher interest rates depressing bond prices, and high oil prices which are bad for profits and therefore equities.

In 1980 gold spiked to its all-time high after the Iranian Revolution and the supposed threat to world oil supplies. Given the rumblings over Iran's nuclear ambitions, is there not a sense of history repeating itself?

Of course nothing is ever exactly the same, but a 20-year bear market for gold ended in the year 2000, and gold has been on the way up ever since. Who is to say that this is not a bull market with much further to go, or at least heading back to where it was 25 years ago when adjusted for inflation.
ugs grow gold that looks like coral
Heather Catchpole
ABC Science Online

Wednesday, 28 January 2004


Microbes grow gold in the lab that buds and bubbles (Frank Reith)
Microbes that grow gold grains looking like a coral reef could open up new possibilities for mineral prospecting, according to an Australian researcher.

Frank Reith from the Australian National University in Canberra and Cooperative Research Centre for Landscape Environments and Mineral Exploration grew these 'bubbly' formations in the lab.

As part of his doctoral thesis Reith looked at the metal-munching microbes involved and how they grow gold grains and nuggets in mines.

He also published his research in the latest issue of the Australasian Institute of Mining and Metallurgy's publication the AusIMM Bulletin.

Gold is usually found in ore bodies, or in waterborne or alluvial deposits that have collected and concentrated gold by physical processes. These processes include gold grains rolling down a stream bed.

Scientists know that microorganisms are involved in dissolving trace amounts of gold out of rock, which Reith's research confirmed.

Gold in the quartz vein at the Tomakin mine on the south coast of New South Wales is invisible, even to high-powered electron microscopes, said Reith.

The gold is hidden in sulfur-rich metal minerals, until the microbes remove it from the rock atom by atom.

But Reith suggested the microbes played another important role: transporting and precipitating gold to form grains and nuggets that collect in alluvial deposits.

He found traces of the microbes' genetic material on the deposits, which confirmed they were present.



Coloured scanning electron micrograph of a gold flake produced by microbes (Frank Reith)
Reith then took some of the microbes from the mine and used them to 'grow' gold in the lab.

"The gold grains grow like a coral reef," Reith told ABC Science Online. "There is a mother cell, which produces buds, forming a bubbly formation."

Reith said the microbes at the surface of these formations could still be hard at work, forming new gold layers on top of the past generation's fossilised gold deposit.

Marker for gold
Reith suggested that the presence of the gold-digging microbes could be used as an environmentally friendly marker for geological exploration.

Looking at past geophysical data for signs of the microbes could prompt further exploration of an area where there is no visible gold deposit, he said.

"It would never substitute for other methods but it could be an add-on," said Reith. "If you found a lot of these organisms in the field you [would be able to] tell that there is some sort of mineralisation there."

Reith said the next step in his research would be to extract genetic material from the microbes to identify the species. He suspects they belong to the genus Pedomicrobium, which contains microbes known to dissolve other metals.

"It's very hard to pinpoint certain organisms; there are millions growing in the soil," he said.

Dr Dennis Gee, chief executive of the research centre involved in the research, said the process Reith unearthed could apply to the main alluvial gold fields in Victoria, at Bathurst in New South Wales, in the Northern Territory and possibly at Coolgardie in Western Australia.

The research could also be important in processing gold from ores that are hard to dissolve, said Gee. These make up one-third of all Australia's gold reserves.
Related Stories
Golden nanobullets to knock out cancer, News in Science 4 Nov 2003
Giving batteries a golden boost, News in Science 29 Sep 2003
Bioremediation: Using Plants to Clean Up, Earthbeat Radio National 12 May 2001
GETTING GOLD
CHAPTER XII

RULES OF THUMB

MINING APPLIANCES AND METHODS

A TEMPORARY FORGE

What prospector has not at times been troubled for the want of a forge? To steel or harden a pick or sharpen a drill is comparatively easy, but there is often a difficulty in getting a forge. Big single action bellows are sometimes bought at great expense, and some ingenious fellows have made an imitation of the blacksmith's bellows by means of sheepskins and rough boards.
With inadequate material and appliances to hand, the following will be found easier to construct and more lasting when constructed. Only a single piece of iron is required, and, at a pinch, one could even dispense with that by using a slab of talcose material, roughly shaping a hearth therein and making a hole for the blast. First, construct a framing about the height of an ordinary smith's forge. This can made with saplings and bark, or better still, if available, out of an empty packing case about three feet square. Fill the frame or case with slightly damped earth and ram it tight, leaving the usual hollow hearth. Then form a chamber below the perforated hearth opening to the rear. Now construct a centrifugal fan, such as is used for the ventilation of shallow shafts and workings. Set this up behind the hearth and revolve by means of a wooden multiplying wheel. A piece of ordinary washing line rope, or sash line rope, well resined if resin can be got--but pitch, tar, or wax will do by adding a little fine dust to prevent sticking--is used as a belt. With very rough materials a handy man can thus make a forge that will answer ordinary requirements.--N.B. Do not use clay for your hearth bed unless you can get a highly aluminous clay, and can give it full time to dry before the forge fire is lit. Ordinary surface soil, not too sandy, acts well, if damped and rammed thoroughly. Of course, if you can get an iron nozzle for your blower the whole operation is simplified.

SIMPLE WAY OF MAKING CHARCOAL

Dig a pit 5 feet square by 3 feet deep and fill with fuel. After lighting, see that the pit is kept full. The hot embers will gradually sink to the bottom. The fuel should be kept burning fiercely until the pit seems almost full, when more fuel should be added, raising the heap about a foot above the level of the ground. The earth dug out of the pit should then be shovelled back over the burning mass. After leaving it to cool for 24 hours the pit will be found nearly full of charcoal. About one-quarter the weight of the dry fuel used should be recovered in charcoal.

ROUGH SMELTING ON THE MINE

Rough smelting on the mine is effected with a flux of borax, carbonate of soda, or, as I have often done, with some powdered white glass. When the gold is smelted and the flux has settled down quietly in a liquid state, the bulk of the latter may be removed, to facilitate pouring into the mould, by dipping an iron rod alternately into the flux and then into a little water, and knocking off the ball of congealed flux which adheres after each dip. This flux should, however, be crushed with a pestle and mortar and panned off, as, in certain cases, it may contain tiny globules of gold.

MISFIRES IN BLASTING

One of the most common sources of accident in mining operations is due either to carelessness or to the use of defective material in blasting. A shot misses, generally for one of two reasons; either the explosive, the cap, or the fuse (most often the latter), is inferior or defective; or the charging is incompletely performed. Sometimes the fuse is not placed properly in the detonator, or the detonator is not properly enclosed in the cartridge, or the fuse is injured by improper tamping. If several shots have been fired together, particularly at the change of a "shift," the men who have to remove the broken material may in so doing explode the missed charge. Or, more inexcusable still, men will often be so foolish as to try to clear out the drill hole and remove the missed cartridge. When a charge is known to have missed all that is necessary to do in order to discharge it safely is to remove a few inches of "tamping" from the top of the drill hole, place in the bore a plug of dynamite with cap and fuse attached, put an inch or two of tamping over it and fire, when the missed charge will also be exploded. Of course, judgment must be used and the depth of the drill taken into consideration. As a rule, miners use far more tamping than is at all requisite. The action of the charge will generally be found quite as effective with a few inches of covering matter as with a foot or more, while the exploding of misfire cartridges is rendered simple, as no removal of tamping is required before placing the top "plug" in case of misfire.

TO PREVENT LOSS OF RICH SPECIMENS IN BLASTING

When blasting the cap of a lode, particularly on rich shutes of gold, the rock is apt to fly, and rich specimens may be thrown far afield and so be lost. A simple way of avoiding this is to procure a quantity of boughs, which tie into loose bundles, placing the leafy parts alternately end for end. Before firing, pile these bundles over the blast and, if care is used, very few stones will fly. The same device may be used in wide shallow shafts.

A SIMPLE MODE OF RETORTING SMALL QUANTITIES OF AMALGAM

Clean your amalgam and squeeze it as hard as possible through strong calico or chamois leather. Take a large sound potato, cut off about a quarter from one end and scoop out a hole in the centre about twice as big as the ball of amalgam. Procure a piece of flat iron--an old spade will do as well as anything--insert the amalgam, and, having placed the potato, cut side downwards, thereon, put the plate of iron on the forge, heat up first gently, then stronger, till separation has taken place, when the gold will be found in a bright clean button on the plate and the mercury in fine globules in the potato, from which it can be re-collected by breaking up the partly or wholly cooked tuber under water in an enamelled or ordinary crockery basin.

TO RETORT SMALL QUANTITIES OF MERCURY FOR AMALGAMATING ASSAY TESTS

Get two new tobacco pipes similar in shape, with the biggest bowls and longest stems procurable. Break off the stem of one close to the bowl and fill the hole with well worked clay (some battery slimes make the best luting clay). Set the stemless pipe on end in a clay bed, and fill with amalgam, pass a bit of thin iron or copper wire beneath it, and bend the ends of the wire upwards. Now fit the whole pipe, bowl inverted, on to the under one, luting the edges of both well with clay. Twist the wire over the top with a pair of nippers till the two bowls are fitted closely together, and you have a retort that will stand any heat necessary to thoroughly distil mercury.

A SIMPLE MODE OF ASCERTAINING THE NOMINAL HORSE-POWER OF AN ENGINE

Multiply the internal diameter of the cylinder by itself and strike off the last figure of the quotient. The diameter is

20" X 20"

20

___

400. The H.P. is 40.

The following rules will be found more professionally accurate from an engineering standpoint, though the term "horse-power" is not now generally employed.

/To find the Nominal Horse-power/.--For /non-condensing/ engines: Multiply the square of the diameter of the cylinder in inches by 7 and divide the product by 80. For /condensing/ engines: Multiply the square of the diameter of the cylinder in inches by 7 and divide the product by 200.

/To find the Actual Horse-power/ of an engine, multiply the area of the cylinder in square inches by the average effective pressure in pounds per square inch, less 3 lb. per square inch as the frictional allowance, and also by the speed of the piston in feet per minute, dividing the product by 33,000, and the quotient will be the actual horse-power.

"SCALING" COPPER PLATES

To "scale" copper plates they may be put over a charcoal or coke fire to slowly sublimate the quicksilver. Where possible, the fireplace of a spare boiler can be utilised, using a thin red fire. After the entire evaporation of the quicksilver the plates should be slowly cooled, rubbed with hydrochloric acid, and put in a damp place overnight, then rubbed with a solution of sal ammoniac and nitre in equal parts, and again heated slowly over a red fire. They must not be allowed to get red hot; the proper degree of heat is indicated by the gold scale rising in blisters, when the plates should be taken from the fire and the gold scraped off. Any part of the plate on which the gold has not blistered should be again rubbed with the solution and fired. The gold scale should be collected in a glass or earthen dish and covered with nitric acid, till all the copper is dissolved, when the gold can be smelted in the usual way; but after it is melted corrosive sublimate should be put in the crucible till a blue flame ceases to be given off.

/A Second Method/

The simplest plan I know is to have a hole dug nine inches deep by about the size of the plate to be scaled; place a brick at each corner, and on each side, halfway between, get up a good fire; let it burn down to strong embers, or use charcoal, then place the plate on three bars of iron extending between the three pairs of bricks, have a strong solution of borax ready in which soak strips of old "table blanket," laying these over the plate and sprinkling them with the borax solution when the plate gets too hot. After a time the deposit of mercury and gold on the plate will assume a white, efflorescent appearance, and may then be readily parted from the copper.

/Another Method/

Heat the plate over an open fire, to drive off the mercury; after which, let it cool, and saturate with dilute sulphuric acid for three hours, or longer; then sprinkle over the surface a mixture of equal parts of common salt and sal ammoniac, and heat to redness; then cool, and the gold scale comes off freely; the scale is then boiled in nitric or sulphuric acid, to remove the copper, previous to melting. Plates may be scaled about once in six months, and will under ordinary circumstances produce about one ounce of clean gold for each superficial foot of copper surface employed. I always paint the back of the plate with a mixture of boiled oil and turpentine, or beeswax dissolved in turpentine, to prevent the acid attacking the copper.

HOW TO SUPPLY MERCURY TO MORTAR BOXES

I am indebted for the following to Mr. J. M. Drake, who, speaking of his experience on the Wentworth Mine, N.S.W., says:

"Fully 90 per cent of the gold is saved on the outside plates, only a small quantity remaining in the mortar. The plates have a slope of 2 in. to 1 ft. No wells are used, the amalgam traps saving any quicksilver which may leach off the plates. The quicksilver is added every hour in the mortar. The quantity is regulated by the mill manager in the following manner: Three pieces of wood, 8 in. wide by 12 in. long by 2 in. thick, have 32 holes 1 in. deep bored in each of them. These holes will just take a small 2 oz. phial. The mill manager puts the required quantity of quicksilver in each bottle and the batteryman empties one bottle in each mortar every hour; and puts it back in the hole upside down. Each block of wood lasts eight hours, the duration of one man's shift." This of course is for a 20-head mill with four mortars or "boxes."

I commend this as an excellent mode of supplying the mercury to the boxes or mortars. The quantity to be added depends on circumstances. A careless battery attendant will often put in too much or too little when working without the automatic feeder. I have known an attendant on suddenly awaking to the fact half through his shift, that he had forgotten to put in any mercury, to then empty into the stamper box two or three pounds weight; with what effect may be easily surmised.

HOW WATER SHOULD ENTER STAMPER BOXES

The following extract which relates to Californian Gold Mill practices is from Bulletin No. 6 of the California State Mining Bureau. I quite agree with the practice.

"The battery water should enter both sides of the mortar in an even quantity, and should be sufficient to keep a fairly thick pulp which will discharge freely through the grating or screen. About 120 cubic feet of water per ton of crushed ore may be considered an average, or 8 to 10 cubic feet per stamp per hour.

"Screens of different materials and with different orifices are used; the materials comprise wire cloth of brass or steel, tough Russian sheet iron, English tinned plate, and, quite recently, aluminium bronze. The 'aluminium bronze' plates are much longer lived than either of the other kinds, and have the further advantage that, when worn out, they can be sold for the value of the metal for remelting; these plates are bought and sold by the pound, and are said to contain 95 per cent of copper and 5 per cent of aluminium. Steel screens are not so much used, on account of their liability to rust."

I have had no experience with the aluminium bronze screen. I presume, however, that it is used only for mills where mercury is not put in the mortars, otherwise, it would surely become amalgamated. The same remark applies to brass wire cloth and tinned plate. Unless the metal of which they are composed will not readily amalgamate with mercury, I should be chary of using new screen devices. Mercury is a most insidious metal and is often found most unexpectedly in places in the battery where it should not be. Probably aluminium steel would be better than any substance mentioned. It would be hard, light, strong, and not readily corrodible. I am not aware if it has been tried.

Under the heading of "Power for Mills" the following is taken from the same source.

POWER FOR MILLS

"As the Pelton wheel seems to find the most frequent application in California, it may be convenient for millmen to have the following rule, applicable to these wheels:

"When the head of water is known in feet, multiply it by 0.0024147, and the product is the horse-power obtainable from one miner's inch of water.

"The power necessary for different mill parts is:

For each 850lb. stamp, dropping 6 in. 95 times per minute, 1.33 h.-p.

For each 750lb. stamp, dropping 6 in. 95 times per minute, 1.18 h.-p.

For each 650lb. stamp, dropping 6 in. 95 times per minute, 1.00 h.-p.

For an 8-inch by 10-inch Blake pattern rock-breaker 9.00 h.-p.

For a Frue or Triumph vanner, with 220 revolutions per min. 0.50 h.-p.

For a 4-feet clean-up pan, making 30 revolutions per min. 1.50 h.-p.

For an amalgamating barrel, making 30 revolutions per min. 2.50 h.-p.

For a mechanical batea, making 30 revolutions per min. 1.00 h.-p."

The writer has had small practical experience of the working of that excellent hydraulic motor, the Pelton wheel, but if by horse-power in the table given is meant nominal horse-power, it appears to be high. Working with 800 cwt. stamps, 80 blows a minute, one horse-power nominal will be found sufficient with any good modern engine, which has no further burden than raising the stamps and pumping the feed water. It is always well, however, particularly when providing engine power, to err on the right side, and make provision for more than is absolutely needed for actual battery requirements. This rule applies with equal potency to pumping engines.

TO AVOID LOSS IN CLEANING UP

The following is a hint to quartz mill managers with respect to that common source of loss of gold involved in the almost inevitable loss of mercury in cleaning up operations. I have known hundreds of pounds' worth of gold to be recovered from an old quartz mill site by the simple process of washing up the ground under the floor.

If you cannot afford to floor the whole of the battery with smooth concrete, at all events smoothly concrete the floor of the cleaning-up room, and let the floor slope towards the centre: where a sink is provided. Any lost mercury must thus find its way to the centre, where it will collect and can be panned off from time to time. Of course an underground drain and mercury trap must be provided.

IRON EXTRACTOR

When using self-feeders, fragments of steel tools are especially liable to get into the battery boxes or other crushing appliance where they sometimes cause great mischief. I believe the following plan would be a practicable remedy for this evil.

By a belt from the cam or counter shaft, cause a powerful electric magnet to extract all magnetic particles; then, by a simple ratchet movement, at intervals withdraw the magnet and drop the adhering fragments into a receptacle by automatically switching off the electric current. A powerful ordinary horseshoe magnet might probably do just as well, but would require to be re-magnetised from time to time.

TO SILVER COPPER PLATES

To silver copper plates, that is, to amalgamate them on the face with mercury, is really a most simple operation, though many batterymen make a great mystery of it. Indeed, when I first went into a quartz mill the process deemed necessary was not only a very tedious one, but very dirty also.

To amalgamate with silver, in fact, to silver-plate your copper without resort to the electro-plating bath, take any old silver (failing that, silver coin will do, but is more expensive), and dissolve it in somewhat dilute nitric acid, using only just sufficient acid as will assist the process. After some hours place the ball of amalgam in a piece of strong new calico and squeeze out any surplus mercury.

About an ounce of silver to the foot of copper is sufficient. To apply it on new plates use nitric acid applied with a swab to free the surface of the copper from oxides or impurities, then rub the ball of amalgam over the surface using some little force. It is always well when coating copper plates with silver or zinc by means of mercury to let them stand dry for a day or two before using, as the mercury oxidises and the coating metal more closely adheres.

Only the very best copper plate procurable should be used for battery tables; bad copper will always give trouble, both in the first "curing," and after treatment. It should not be heavily rolled copper, as the more porous the metal the more easily will the mercury penetrate and amalgamate. I cannot agree that any good is attained by scouring the plates with sand and alkalies, as recommended in some books on the subject; on the contrary, I prefer the opposite mode of treatment, and either face the plates with nitrate of silver and nitrate of mercury, or else with sulphate of zinc and mercury, in the form of what is called zinc amalgam. If mine water, which often contains a little free sulphuric acid, is being used, the latter plan is preferable.

The copper should be placed smoothly on the wooden table and secured firmly thereto by copper tacks. If the plate should be bent or buckled, it may be flattened by beating it with a heavy hammer, taking care to interpose a piece of inch-thick soft wood between hammer and plate.

To coat with mercury only, procure some nitrate of mercury. This is easily made by placing mercury in an earthenware bowl, pouring somewhat dilute nitric acid on it, and letting it stand till the metallic mercury is changed to a white crystal. Dense reddish-brown fumes will arise, which are injurious if breathed, so the operation should be conducted either in the open air, or where there is a draught.

Having your silvering solution ready, which is to be somewhat diluted with water, next take two swabs, with handles about 12 inches long, dip the first into a basin containing dilute nitric acid, and rub it rapidly over about a foot of the surface of the plate; the oxide of copper will be absolutely removed, and the surface of the copper rendered pure and bright; then take the other swab, wet with the dilute nitric of mercury, and pass it over the clean surface, rubbing it well in. Continue this till the whole plate has a coating of mercury. It may be well to go over it more than once. Now turn on the water and wash the plate clean, sprinkle with metallic mercury, rubbing it upwards until the plate will hold no more.

A basin with nitrate of mercury may be kept handy, and the plates touched up from time to time for a few days until they get amalgamated with gold, after which, unless you have much base metal to contend with, they will give no further trouble.

It must be remembered, however, that an excessive use of nitric acid will result in waste of mercury, which will be carried off in a milky stream with the water; and also that it will cause the amalgam to become very hard, and less active in attracting other particles of gold.

If you are treating the plate with nitrate of silver prepared as already mentioned, clean the plate with dilute nitric acid, rub the surface with the ball of amalgam, following with the swab and fairly rubbing in. It will be well to prepare the plate some days before requiring to use it, as a better adhesion of the silver and copper takes place than if mercury is applied at once.

To amalgamate with zinc amalgam, clean the copper plate by means of a swab, with fairly strong sulphuric acid diluted with water; then while wet apply the zinc-mercury mixture and well rub in. To prepare the zinc-amalgam, clip some zinc (the lining of packing cases will do) into small pieces and immerse them in mercury after washing them with a little weak sulphuric acid and water to remove any coating of oxide. When the mercury will absorb no more zinc, squeeze through chamois leather or calico (as for silver amalgam), and well rub in. The plate thus prepared should stand for a few days, dry, before using. If, before amalgamation with gold takes place, oxide of copper or other scum should rise on this plate a little very dilute sulphuric acid will instantly remove it.

Sodium and cyanide of potassium are frequently used in dressing- plates, but the former should be very sparingly employed, as it will often do more harm than good by taking up all sorts of base metals with the amalgam, and so presenting a surface which the gold will pass over without adhering to. Where water is scarce, and is consequently used over and over again, lime may be added to the pulp, or, if lime is not procurable, wood ashes may be used. The effect is two-fold; the lime not only tends to "sweeten" sulphide ores and keep the tables clean, but also causes the water to cleanse itself more quickly of the slimes, which will be more rapidly precipitated. When zinc amalgam is used, alkalies would, of course, be detrimental.

When no other water than that from the mine is available, difficulties often arise owing to the impurities it contains. These are various, but among the most common are the soluble sulphates, and sometimes free sulphuric acid evolved by the oxidisation of metallic sulphides. In the presence of this difficulty, do one of two things; either /utilise/ or /neutralise/. In certain cases, I recommend the former. Sometime since I was treating, for gold extraction, material from a mine which was very complex in character, and for which I coined the term "polysynthetic." This contained about half a dozen different sulphides. The upper parts of the lode being partially oxidised, free sulphuric acid (H2SO4) was evolved. I therefore, following out a former discovery, added a little metallic zinc to the mercury in the boxes and on the plates with excellent results. When the free acid in the ore began to give out in the lower levels I added minute quantities of sulphuric acid to the water from time to time. I have since found, however, that with some water, particularly West Australian, the reaction is so feeble (probably owing to the lime and magnesia present) as to make this mode of treatment unsuitable.

HOW TO MAKE A DOLLY

I have seen some rather elaborate dollies, intended to be worked with amalgamating tables, but the usual prototype of the quartz mill is set up, more or less, as follows: A tree stump, from 9 in. to a foot diameter, is levelled off smoothly at about 2 ft. from the ground; on this is firmly fixed a circular plate of 1/2 in. iron, say 9 in. in diameter; a band of 3/16 in. iron, about 8 or 9 in. in height, fits more or less closely round the plate. This is the battery box. A beam of heavy wood, about 3 in. diameter and 6 ft. long, shod with iron, is vertically suspended, about 9 in. above the stump, from a flexible sapling with just sufficient spring in it to raise the pestle to the required height. About 2 ft. from the bottom the hanging beam is pierced with an augur hole and a rounded piece of wood, 1 1/2 in. by 18 in., is driven through to serve as a handle for the man who is to do the pounding. His mate breaks the stone to about 2 in. gauge and feeds the box, lifting the ring from time to time to sweep off the triturated gangue, which he screens through a sieve into a pan and washes off, either by means of a cradle or simply by panning. In dollying it generally pays to burn the stone, as so much labour in crushing is thus saved. A couple of small kilns to hold about a ton each dug out of a clay bank will be found to save fuel where firewood is scarce, and will more thoroughly burn the stone and dissipate the base metals, but it must be remembered that gold from burnt stone is liable to become so encrusted with the base metal oxides as to be difficult to amalgamate.

ROUGH WINDLASS

Make two St. Andrew's crosses with four saplings, the upper angle being shorter than the lower; fix these upright, one at each end of the shaft; stay them together by cross pieces till you have constructed something like a "horse," such as is used for sawing wood, the crutch being a little over 3 feet high. Select a leg for a windlass barrel, about 6 in. diameter and a foot longer than the distance between the supports, as straight as is procurable; cut in it two circular slots about an inch deep by 2 in. wide to fit into the forks; at one end cut a straight slot 2 in. deep across the face. Now get a crooked bough, as nearly the shape of a handle as nature has produced it, and trim it into right angular shape, fit one end into the barrel, and you have a windlass that will pull up many a ton of stuff.

PUDDLER

This is made by excavating a circular hole about 2 ft. 9 in. deep and, say 12 ft. in diameter. An outer and inner wall are then constructed of slabs 2 ft. 6 in. in height to ground level, the outer wall being thus 30 ft. and the inner 15 ft. in circumference. The circular space between is floored with smooth hardwood slabs or boards, and the whole made secure and water-tight. In the middle of the inner enclosure a stout post is planted, to stand a few inches above the wall, and the surrounding space is filled up with clay rammed tight. A strong iron pin is inserted in the centre of the post, on which is fitted a revolving beam, which hangs across the whole circumference of the machine and protrudes a couple of feet or so on each side. To this beam are attached, with short chains, a couple of drags made like V- shaped harrows by driving a piece of red iron through a heavy frame, shaped as a rectangular triangle.

To one end of the beam an old horse is attached, who, as he slowly walks round the circular track, causes the harrows and drags to so puddle the washdirt and water in the great wooden enclosure that the clay is gradually disintegrated, and flows off with the water which is from time to time admitted. The clean gravel is then run through a "cradle, "long Tom," or "sluice," and the gold saved. This, of course, is the simplest form of gold mining. In the great alluvial mines other and more intricate appliances are used but the principle of extraction is the same.

A MAKESHIFT PUMP

To make a temporary small "draw-lift" pump, which will work down to a hundred feet or more if required, take a large size common suction Douglas pump, and, after removing the top and handle, fix the pump as close to the highest level of the water in the shaft as can be arranged. Now make a square water-tight wooden column of slightly greater capacity than the suction pipe, fix this to the top of the pump, and by means of wooden rods, work the whole from the surface, using either a longer levered handle or, with a little ingenuity, horse-power. If you can get it the iron downpipe used to carry the water from the guttering of houses is more easily adapted for the pipe column; then, also, iron pump rods can be used but I have raised water between 60 and 70 feet with a large size Douglas pump provided only with a wooden column and rods.

SQUEEZING AMALGAM

For squeezing amalgam, strong calico, not too coarse, previously soaked in clean water, is quite as good as ordinary chamois leather. Some gold is fine enough to escape through either.

MERCURY EXTRACTOR

The mercury extractor or amalgam separator is a machine which is very simple in construction, and is stated to be most efficient in extracting quicksilver from amalgam, as it requires but from two to three minutes to extract the bulk of the mercury from one hundred pounds of amalgam, leaving the amalgam drier than when strained in the ordinary way by squeezing through chamois leather or calico. The principle is that of the De Laval cream separator--i.e., rapid centrifugal motion. The appliance is easily put together, and as easily taken apart. The cylinder is made of steel, and is run at a very high rate of speed.

The general construction of the appliance is as follows: The casing or receiver is a steel cylinder, which has a pivot at the bottom to receive the step for an upright hollow shaft, to which a second cylinder of smaller diameter is attached. The second cylinder is perforated, and a fine wire cloth is inserted. The mercury, after passing through the cloth, is discharged through the perforations. When the machine is revolved at great speed, the mercury is forced into the outside cylinder, leaving the amalgam, which has been first placed in a calico or canvas bag, in a much drier state than it could be strained by hand. While not prepared to endorse absolutely all that is claimed for this appliance, I consider that it has mechanical probability on its side, and that where large quantities of amalgam have to be treated it will be found useful and effective.

SLUICE PLATES

I am indebted to Mr. F. W. Drake for the following account of sluice plates, which I have never tried, but think the device worth attention:

"An addition has been made to the gold-saving appliances by the placing of what are called in America, 'sluice plates' below the ordinary table. The pulp now flows over an amalgamating surface, 14 ft. long by 4 ft. wide, sloping 1 1/2 in. to the foot, and is then contracted into a copper-plated sluice 15 ft. long by 14 in. wide, having a fall of 1 in. to the foot. Our mill manager (Mr. G. C. Knapp) advocated these sluice plates for a long time before I would consent to a trial. I contended that as we got little or no amalgam from the lower end of our table plates there was no gold going away capable of being recovered by copper plates; and even if it were, narrow sluice plates were a step in the wrong direction. If anything the amalgamating surface should be widened to give the particles of gold a better chance to settle. His argument was that the conditions should be changed; by narrowing the stream and giving it less fall, gold, which was incapable of amalgamation on the wide plates, would be saved. We finally put one in, and it proved so successful that we now have one at the end of each table. The per-centage recovered on the sluice plates, of the total yield, varies, and has been as follows:-- October, 9.1 per cent; November, 6.9 per cent; December, 6.4 per cent; January, 4.3 per cent; February, 9.3 per cent."

MEASURING INACCESSIBLE DISTANCES

To ascertain the width of a difficult gorge, a deep river, or treacherous swamp without crossing and measuring, sight a conspicuous object at the edge of the bank on the farther side; then as nearly opposite and square as possible plant a stake about five feet high, walk along the nearer margin to what you guess to be half the distance across (exactitude in this respect is not material to the result), there plant another stake, and continuing in a straight line put in a third. The stakes must be equal distances apart and as nearly as possible at a right angle to the first line. Now, carrying in hand a fourth stake, strike a line inland at right angles to the base and as soon as sighting over the fourth stake, you can get the fourth and second stakes and the object on the opposite shore in line your problem is complete. The distance between No. 4 and No. 3 stakes is the same as that between No. 1 and the opposite bank.

TO SET OUT A RIGHT ANGLE WITH A TAPE

Measure 40 ft. on the line to which you wish to run at right angles, and put pegs at A and B; then, with the end of the tape held carefully at A, take 80 ft., and have the 80 ft. mark held at B. Take the 50 ft. mark and pull from A and B until the tape lies straight and even, you will then have the point C perpendicular to AB. Continue straight lines by sighting over two sticks in the well-known way.

/Another method/.--Stick a pin in each corner of a square board, and look diagonally across them, first in the direction of the line to which you wish to run at right angles, and then for the new line sight across the other two pins.

A SIMPLE LEVELLING INSTRUMENT

Fasten a common carpenter's square in a slit to the top of a stake by means of a screw, and then tie a plumb-line at the angle so that it may hang along the short arm, when the plumb-line hangs vertically and sights may be taken over it. A carpenter's spirit-level set on an adjustable stand will do as well. The other arm will then be a level.

Another very simple, but effective, device for finding a level line is by means of a triangle of wood made of half-inch boards from 9 to 12 ft. long. To make the legs level, set the triangle up on fairly level ground, suspend a plummet from the top and mark on the cross-piece where the line touches it. Then reverse the triangle, end for end, exactly, and mark the new line the plumb-line makes. Now make a new mark exactly half way between the two, and when the plumb-line coincides with this, the two legs are standing on level ground. For short water races this is a very handy method of laying out a level line.

TO MEASURE THE HEIGHT OF A STANDING TREE

Take a stake about your own height, and walking from the butt of the tree to what you judge to be the height of the timber portion you want, drive your stake into the ground till the top is level with your eyes; now lie straight out on your back, placing your feet against the stake, and sight a point on the tree. AB equals BC. If BC is, say 40 ft., that will be the height of your "stick of timber." Thus, much labour may be saved in felling trees the timber portion of which may afterwards be found to be too short for your purpose.

LEVELLING BY ANEROID BAROMETER

This should be used more for ascertaining relatively large differences in altitudes than for purposes where any great nicety is required. For hills under 2000 ft., the following rule will give a very close approximation, and is easily remembered, because 55 degrees, the assumed temperature, agrees with 55 degrees, the significant figures in the 55,000 factor, while the fractional correction contains /two fours/.

Observe the altitudes and also the temperatures on the Fahrenheit thermometer at top and bottom respectively, of the hill, and take the mean between them. Let B represent the mean altitude and b the mean temperature. Then 55000 X B - b/B + b = height of the hill in feet for the temperature of 55 degrees. Add 1/440 of this result for every degree the mean temperature exceeds 55 degrees; or subtract as much for every degree below 55 degrees.

TO DETERMINE HEIGHTS OF OBJECTS

/By Shadows/

Set up vertically a stick of known length, and measure the length of its shadow upon a horizontal or other plane; measure also the length of the shadow thrown by the object whose height is required. Then it will be:--As the length of the stick's shadow is to the length of the stick itself, so is the length of the shadow of the object to the object's height.

/By Reflection/

Place a vessel of water upon the ground and recede from it until you see the top of the object reflected from the surface of the water. Then it will be:--As your horizontal distance from the point of reflection is to the height of your eye above the reflecting surface, so is the horizontal distance of the foot of the object from the vessel to its altitude above the said surface.

/Instrumentally/

Read the vertical angle, and multiply its natural tangent by the distance between instrument and foot of object; the result is the height.

When much accuracy is not required vertical angles can be measured by means of a quadrant of simple construction. The arc AB is a quadrant, graduated in degrees from B to A; C, the point from which the plummet P is suspended, being the centre of the quadrant.

/When/ the sights AC are directed towards any object, S, the degrees in the arc, BP, are the measure of the angle of elevation, SAD, of the object.

TO FIND THE DEPTH OF A SHAFT

/Rule/:--Square the number of seconds a stone takes to reach the bottom and multiply by 16.

Thus, if a stone takes 5 seconds to fall to the bottom of a shaft--

5 squared = 25; and 25 X 16 = 400 feet, the required depth of shaft.

DESCRIPTION OF PLAN FOR RE-USING WATER

Where water is scarce it may be necessary to use it repeatedly. In a case of this kind in Egypt, the Arab miners have adopted an ingenious method which may be adapted to almost any set of conditions. At a is a sump or water-pit; b is an inclined plane on which the mineral is washed and whence the water escapes into a tank c; d is a conduit for taking the water back to a; e is a conduit or lever pump for raising the water. A certain amount of filtration could easily be managed during the passage from c to a.

COOLING COMPOUND FOR HEATED BEARINGS

Mercurial ointment mixed with black cylinder oil and applied every quarter of an hour, or as often as expedient. The following is also recommended as a good cooling compound for heavy bearings:--Tallow 2 lb., plumbage 6 oz., sugar of lead 4 oz. Melt the tallow with gentle heat and add the other ingredients, stirring until cold.

CLEANING GREASY PLUMMER BLOCKS

When, through carelessness or unpreventable cause, plummer blocks and other detachable portions of machinery become clogged with sticky deposits of grease and impurities, a simple mode of cleansing the same is to take about 1000 parts by weight of boiling water, to which add about 10 or 15 parts of ordinary washing soda. Keep the water on the boil and place therein the portions of the machine that are to be cleaned; this treatment has the effect of quickly loosening all grease, oil, and dirt, after which the metal is thoroughly washed and dried. The action of the lye is to form with the grease a soap soluble in water. To prevent lubricating oil hardening upon the parts of the machinery when in use, add a third part of kerosene.

AN EXCELLENT ANTI-FRICTION COMPOUND

For use on cams and stamper shanks, which will be harmless should it drop into the mortar or stamper boxes, is graphite (black-lead) and soft soap. When the guides are wooden, the soft soap need not be added; black-lead made into a paste with water will act admirably.

TO CLEAN BRASS

Oxalic acid 1 oz., rotten stone 6 oz., powdered gum arabic 1/2 oz., sweet oil 1 oz. Rub on with a piece of rag.

A SOLVENT FOR RUST

It is often very difficult, and sometimes impossible, to remove rust from articles made of iron. Those which are very thickly coated are most easily cleaned by being immersed in a nearly saturated solution of chloride of tin. The length of time they remain in this bath is determined by the thickness of the coating of rust. Generally from twelve to twenty-four hours is long enough.

TO PROTECT IRON AND STEEL FROM RUST

The following method is but little known, although it deserves preference over many others. Add 7 oz. of quicklime to 1 3/4 pints of cold water. Let the mixture stand until the supernatant fluid is entirely clear. Then pour this off, and mix with it enough olive oil to form a thick cream, or rather to the consistency of melted and re- congealed butter. Grease the articles of iron or steel with this compound, and then wrap them up in paper, or if this cannot be done, apply the mixture somewhat more thickly.

TO KEEP MACHINERY FROM RUSTING

Take 1 oz. of camphor, dissolve it in 1 lb. of melted lard; mix with it (after removing the scum) as much fine black-lead as will give it an iron colour; clean the machinery, and smear it with this mixture. After twenty-four hours rub off and clean with soft, linen cloth. This mixture will keep machinery clean for months under ordinary circumstances.

FIRE-LUTE

An excellent fire-lute is made of eight parts sharp sand, two parts good clay, and one part horse-dung; mix and temper like mortar.

ROPE-SPLICING

A short splice is made by unlaying the ends of two pieces of rope to a sufficient length, then interlaying them, draw them close and push the strands of one under the strands of the other several times. This splice makes a thick lump on the rope and is only used for slings, block-straps, cables, etc.


Getting Gold Contents
GETTING GOLD
CHAPTER V

THE GENESIOLOGY OF GOLD -- AURIFEROUS DRIFTS

Having considered the origin of auriferous lodes, and the mode by which in all probability the gold was conveyed to them and deposited as a metal, it is necessary also to inquire into the derivation of the gold of our auriferous drifts, and the reasons for its occurrence therein.
When quite a lad on the Victorian alluvial fields, I frequently heard old diggers assert that gold grew in the drifts where found. At the time we understood this to mean that it grew like potatoes; and, although not prepared with a scientific argument to prove that such was not so, the idea was generally laughed at. I have lived to learn that these old hard-heads were nearer the truth than possibly they clearly realised, and that gold does actually grow or agglomerate; and, indeed, is probably even now thus growing, though it is likely that the chemical and electric action in the mineral waters flowing through the drifts is not in this age nearly so active as formerly.

Most boys have tried the experiment of dipping a clean-bladed knife into sulphate of copper, and so depositing on the steel a film of copper, which adheres closely until worn away. This is a simple demonstration of a hydro-metallurgical process, though probably young hopeful is not aware of the fact; and it is really by an enlargement of this process that our beautiful and artistic gold- and silver- plated ware is produced.

In the great laboratory of Nature similar chemical depositions have taken place in the past, and may still be in progress; indeed, there is sound scientific reason to suppose that in certain localities this is even now the case, and that in this way much of our so-called alluvial gold has been formed, that is, by the deposition on metallic bases of the gold held in solution.

We will, however, take, to begin with, the generally accepted theory as to the occurrence of alluvial gold. First, let it be said, that certain alluvial gold is unquestionably derived from the denudation of quartz lodes. Such is the gold dust found in many Asiatic and African rivers, in the great placer mines of California, as also the gold dust gained from the beach sand on the west coast of New Zealand, or in the enormous alluvial drifts of the Shoalhaven Valley, New South Wales. Of the first, many fabulous tales are told to account for its being found in particular spots each summer after the winter floods, and miraculous agency was asserted, while the early beachcombers of the Hokitika district found an equally ridiculous derivation for their gold, which was always more plentiful after heavy weather. They imagined that the breakers were disintegrating some abnormally rich auriferous reefs out at sea, and that the resultant gold was washed up on the beach.

The facts are simply, with regard to the rivers, that the winter floods break down the drifts in the banks and agitate the auriferous detritus, thus acting as natural sluices, and cause the metal to accumulate in favourable spots; whilst on the New Zealand coast the heavy seas breaking on the shingly beach, carry off the lighter particles, leaving behind the gold, which is so much heavier. These beaches are composed, as also are the "terraces" behind, of enormous glacial and fluvial deposits, all containing more or less gold, and extend inland to the foot of the mountains.

It is almost certain that the usually fine gold got by hydraulicing in Californian canyons, in the gullies of the New Zealand Alps, and the great New South Wales drifts, is largely the result of the attrition of the boulders and gravel of moraines, which has thus freed, to a certain extent, the auriferous particles. But when we find large nuggety masses of high carat gold in the beds of dead rivers, another origin has to be sought.

As previously stated, there is fair reason to assume that at least three salts of gold have existed, and, possibly, may still be found in Nature--silicate, sulphide, and chloride. All of these are soluble and in the presence of certain reagents, also existing naturally, can be deposited in metallic form. Therefore, if, as is contended, reef gold was formed with the reefs from solutions in mineral waters, by inferential reasoning it can be shown that much of our alluvial gold was similarly derived.

The commonly accepted theory, however, is that the alluvial matter of our drifts has been ground out of the solid siliceous lodes by glacial and fluvial action, and that the auriferous leads have been formed by the natural sluicing operations of former streams. To this, however, there are several insuperable objections.

First, how comes it that alluvial gold is usually superior in purity to the "reef" gold immediately adjacent? Second, why is it that masses of gold, such as the huge nuggets found in Victoria and New South Wales, have never been discovered in lodes? Third, how is it that these heavy masses which, from their specific gravity, should be found only at the very bottom of the drifts, if placed by water action, are sometimes found in all positions from the surface to the bottom of the "wash"? And, lastly, why is it that when an alluvial lead is traced up to, or down from, an auriferous reef, that the light, angular gold lies close to the roof, while the heavy masses are often placed much farther away? Any one who has worked a ground sluice knows how extremely difficult it is with a strong head of water to shift from its position an ounce of solid gold. What, then, would be the force required to remove the Welcome Nugget? Under certain circumstances, Niagara would not be equal to the task.

The generally smooth appearance of alleged alluvial gold is adduced as an argument in favour of its having been carried by water from its original place of deposit, and thus in transit become waterworn; while some go so far as to say that it was shot out of the reefs in a molten state. The latter idea has been already disposed of, but if not, it may be dismissed with the statement that the heat which would melt silica in the masses met with in lodes would sublimate any gold contained, and dissipate it, not in nuggets but in fumes. With regard to the assumed waterworn appearance of alluvial gold, I have examined with the microscope the smooth surface of more than one apparently waterworn nugget, and found that it was not scratched and abraded, as would have been the case had it been really waterworn, but that it presented the same appearance, though infinitely finer in grain, as the surface of a piece of metal fresh from the electrical plating- bath.

Mr. Daintree, of the Victorian Geological Survey, many years ago discovered accidentally that gold chloride would deposit its metal on a metallic base in the presence of any organic substance. Mr. Daintree found that a piece of undissolved gold in a bottle containing chloride of gold in solution had, owing to a portion of the cork having fallen into the liquid, grown or accretionised so much that it could not be extracted through the neck. This lead Mr. Charles Wilkinson, who has contributed much to our scientific knowledge of metallurgy, to experiment further in the same direction. He says: "Using the most convenient salt of gold, the terchloride, and employing wood as the decomposing agent, in order to imitate as closely as possible the organic matter supposed to decompose the solution circulating through the drifts, I first immersed a piece of cubic iron pyrites taken from the coal formation of Cape Otway, far distant from any of our gold rocks, and therefore less likely to contain gold than other pyrites. The specimen (No. 1) was kept in dilute solution for about three weeks, and is completely covered with a bright film of gold. I afterwards filed off the gold from one side of a cube crystal to show the pyrites itself and the thickness of the surrounding coating, which is thicker than ordinary notepaper. If the conditions had continued favourable for a very lengthened period, this specimen would doubtless have formed the nucleus of a large nugget. Iron, copper, and arsenical pyrites, antimony, galena, molybdenite, zinc blende, and wolfram were treated in the above manner with similar results. In the above experiments a small chip of wood was employed as the decomposing agent. In one instance I used a piece of leather. All through the wood and leather gold was disseminated in fine particles, and when cut through the characteristic metallic lustre was brightly reflected. The first six of these sulphides were also operated upon simply in the solution without organic matter; but they remained unaltered."

Wilkinson found that when the solution of gold chloride was as strong as, say, four grains to the ounce of water, that the pyrites or other base began to decompose, and the iron sulphide changed to yellow oxide, the "gossan" of our lodes, and that though the gold was deposited, this occurred in an irregular way, and it was coated with a dark brown powdery film something like the "black gold," often found in drifts containing much ferruginous matter. Such were the curious Victorian nuggets Spondulix and Lothair.

Professor Newbery also made a number of similar experiments, and arrived at like results. He states as follows: "I placed a cube of galena in a solution of chloride of gold, with free access of air, and put in organic matter; gold was deposited as usual, in a bright metallic film, apparently completely coating the cube. After a few months the film burst along the edges of the cube, and remained in that state with the cracks open without any further alteration in size or form being apparent. Upon removing it a few days ago and breaking it open, I found that a large portion of the galena had been decomposed, forming chloride and sulphate of lead and free sulphur, which were mixed together, encasing a small nucleus of undecomposed sulphate of lead. The formation of these salts had exerted sufficient force to burst open the gold coating, which upon the outside had the mammillary form noticed by Wilkinson, while the inside was rough and irregular with crystals forcing their way into the lead salts. Had this action continued undisturbed, the result would have been a nugget with a nucleus of lead salts, or if there had been a current to remove the results of decomposition, a nugget without a nucleus of foreign matter."

But Newbery also made another discovery which still further establishes the probability of the accretionary growth of gold in drifts. In the first experiments both investigators used organic substances as the reagent to cause the deposit of gold on its base, and in each case these substances whether woodchips, leather, or even dead flies, were found to be so absolutely impregnated with gold as to leave a golden skeleton when afterwards burned. Timber found in the Ballarat deep leads has been proved to be similarly impregnated.

Newbery found that gold could also be deposited on sulphurets without any other reagent. He says: "In our mineral sulphurets, however, we have agents which are not only capable of reducing gold and silver from solution, but besides are capable of locating them when so reduced in coherent and bulky masses. Thus the aggregation of the nuggety forms of gold from solution becomes a still more simple matter, only one reagent being necessary, so that there is a greater probability of such depositions obtaining than were a double process necessary. Knowing the action of sulphides, the manner or the mode of formation of a portion at least of these nuggets seems apparent. Conceive a stream or river fed by springs rising in a country intersected by auriferous reefs, and consequently in this case carrying gold in solution; the drift of such a country must be to a greater or lesser extent pyritous, so that the /debris/ forming the beds of these streams or rivers will certainly contain nodules of such matters disseminated or even stopping them in actual contact with the flow of water. It follows, then, from what has been previously affirmed, that there will be a reduction of gold by these nodules, and that the metal thus reduced will be firmly attached to them, at first in minute spangles isolated from each other, but afterwards accumulating and connecting in a gradual manner at that point of the pyritous mass most subject to the current until a continuous film of some size appears. This being formed the pyrites and gold are to a certain extent polarised, the film or irregular but connected mass of gold forming the negative, and the pyrites the positive end of a voltaic pair; and so according as the polarisation is advanced to completion the further deposition of gold is changed in its manner from an indiscriminate to an orderly and selective deposition concentrated upon the negative or gold plate. The deposition of gold being thus controlled, its loss by dispersion or from the crumbling away of the sustaining pyrites is nearly or quite prevented, a conservative effect which we could scarcely expect to obtain if organic matter were the reducing agent. Meanwhile there is a gradual wasting away of the pyrites or positive pole, its sulphur being oxidised to sulphuric acid and its iron to sesquioxide of iron, or hematite, a substance very generally associated with gold nuggets. According to the original size of the pyritous mass, the protection it receives from the action of oxidising substances other than gold, the strength of the gold solution, length of exposure to it, the rate of supply and velocity of stream, will be the size of the gold nugget. As to the size of a pyritous mass necessary to produce in this manner a large nugget, it is by no means considerable. A mass of common pyrites (bisulphide of iron) weighing only 12 lbs. is competent for the construction of the famous 'Welcome Nugget,' an Australian find having weight equal to 152 lbs. avoirdupois. Such masses of pyrites are by no means uncommon in our drifts or the beds of our mountain streams. Thus we find that no straining of the imagination is required to conceive of this mode of formation for the huge masses of gold found in Australia in particular, such as the Welcome Nugget, 184 lbs. 9 oz.; the Welcome Stranger, a surface nugget, 190 lbs. after smelting; the Braidwood specimen nugget, 350 lbs., two-thirds gold; besides many other large masses of almost virgin gold which have been obtained from time to time in the alluvial diggings."

The author has made a number of experiments in the same direction, but more with the idea of demonstrating how possibly gold may in certain cases have been deposited in siliceous formations after such formations had solidified. Some of the results were remarkable and indeed unexpected. I found that I could produce artificial specimens of auriferous quartz from stone which had previously contained no gold whatever, also that it was not absolutely necessary that the stone so treated should contain any metallic sulphides.

The following was contributed by the author and is from the "Transactions" of the Australasian Institute of Mining Engineers for 1893:--

THE DEPOSITION OF GOLD.

"The question as to how gold was originally deposited in our auriferous lodes is one to which a large amount of attention has been given, both by mineralogists and practical miners, and which has been hotly argued by those who held the igneous theory and those who pronounced for the aqueous theory. It was held by the former that as gold was not probably existent in nature in any but its metallic form, therefore it had been deposited in its siliceous matrix while in a molten state, and many ingenious arguments were adduced in support of this contention. Of late, however, most scientific men, and indeed many purely empirical inquirers (using the word empirical in its strict sense) have come to the conclusion that though the mode in which they were composed was not always identical, all lodes, including auriferous formations, were primarily derived from mineral- impregnated waters which deposited their contents in fissures caused either by the cooling of the earth's crust or by volcanic agency.

"The subject is one which has long had a special attraction for the writer, who has published several articles thereon, wherein it was contended that not only was gold deposited in the lodes from aqueous solution, but that some gold found in form of nuggets had not been derived from lodes but was nascent in its alluvial bed; and for this proof was afforded by the fact that certain nuggets have been unearthed having the shape of an adjacent pebble or angular fragment of stone indented in them. Moreover, no true nugget of any great size has ever been found in a lode such as the Welcome, 2159 oz., or the Welcome Stranger, 2280 oz.; while it was accidentally discovered some years ago that gold could be induced to deposit itself from its mineral salt to the metallic state on any suitable base, such as iron sulphide.

"Following out this fact, I have experimented with various salts of gold, and have obtained some very remarkable results. I have found it practicable to produce most natural looking specimens of auriferous quartz from stone which previously, as proved by assay, contained no gold whatever. Moreover, the gold, which penetrates the stone in a thorough manner, assumes some of the more natural forms. It is always more or less mammillary, but at times, owing to causes which I have not yet quite satisfied myself upon, is decidedly dendroidal, as may be seen in one of the specimens which I have submitted to members. Moreover, I find it possible to moderate the colour and to produce a specimen in which the gold shall be as ruddy yellow as in the ferro- oxide gangue of Mount Morgan, or to tone it to the pale primrose hue of the product of the Croydon mines.

"I note that the action of the bath in which the stone is treated has a particularly disintegrating effect on many of the specimens. Some, which before immersion were of a particularly flinty texture, became in a few weeks so friable that they could be broken up by the fingers. So far as my experiments have extended they have proved this, that it was not essential that the silica and gold should have been deposited at the one time in auriferous lodes. A non-auriferous siliceous solution may have filled a fissure, and, after solidifying, some volcanic disturbance may have forced water impregnated with a gold salt through the interstices of the lode formation, when, if the conditions were favourable, the gold would be deposited in metallic forms. I prefer, for reasons which will probably be understood, not to say exactly by what process my results are obtained, but submit specimens for examination.

"(1) Piece of previously non-gold bearing stone. Locality near Adelaide, now showing gold freely in mammillary and dendroidal form.

"(2) Stone from New South Wales, showing gold artificially introduced in interstices and on face.

"(3) Stone from West Australia, very glassy looking, now thoroughly impregnated with gold; the mammillary formation being particularly noticeable.

"(4) Somewhat laminated quartz from Victoria, containing a little antimony sulphide. In this specimen the gold not only shows on the surface but penetrates each of the laminations, as is proved by breaking.

"(5) Consists of fragments of crystallised carbonate of lime from Tarrawingee, in which the gold is deposited in spots, in appearance like ferrous oxide, until submitted to the magnifying glass.

"The whole subject is worthy of much more time than I can possibly give it. The importance lies in this: That having found how the much desired metal may have been deposited in its matrix, the knowledge should help to suggest how it may be economically extracted therefrom."

A very remarkable nugget weighing 16 3/4 oz. was sluiced from near the surface in one of my own mining properties at Woodside, South Australia, some years ago, which illustrated the nuclear theory very beautifully. This nugget is very irregular in shape, fretted and chased as though with a jeweller's graving tool, showing plainly the shape of the pyritous crystals on which it was formed while the interstices were filled with red hematite iron just as found in artificially formed nuggets on a sulphide of iron base. The author has a nugget from the same locality weighing about 1 1/2 oz. which exhibits in a marked degree the same characteristics, as indeed does most of the alluvial gold found in the Mount Lofty Ranges; also a nugget from near the centre of Australia weighing four ounces, in which the original crystals of pyrites are reproduced in gold just as an iron horse-shoe, placed in a launder through which cupriferously impregnated water flows, will in time be changed to nearly pure copper and yet retain its shape.

Now with regard to the four points I have put as to the apparent anomalies of occurrence of alluvial gold. The reason why alluvial gold is of finer quality as a rule than reef is probably because while gold and silver, which have a considerable affinity for each other, were presumably dissolved from their salts and held in solution in the same mineral water, they would in many cases not be deposited together, for the reason that silver is most readily deposited in the presence of alkalies, which would be found in excess in mineral waters coming direct from the basic rocks, while gold is induced to precipitate more quickly in acid solutions, which would be the character of the waters after they had been exposed to atmospheric action and to contact with organic matters.

This, then, may explain not only the comparatively greater purity of the alluvial gold, but also why big nuggets are found so far from auriferous reefs, and also why heavy masses of gold have been frequently unearthed from among the roots even of living trees, but more particularly in drifts containing organic matter, such as ancient timber.

All, then, that has been adduced goes to establish the belief that the birthplace of our gold is in certain of the earlier rocks comprising the earth's crust, and that its appearance as the metal we value so highly is the result of electro-chemical action, such as we can demonstrate in the laboratory.


Getting Gold Contents Next Chapter
GETTING GOLD
CHAPTER III

LODE OR REEF PROSPECTING

The preceding chapter dealt more especially with prospecting as carried on in alluvial fields. I shall now treat of preliminary mining on lodes or "reefs."

As has already been stated, the likeliest localities for the occurrence of metalliferous deposits are at or near the junction of the older sedimentary formations with the igneous or intrusive rocks, such as granites, diorites, etc. In searching for payable lodes, whether of gold, silver, copper, or even tin in some forms of occurrence, the indications are often very similar. The first prospecting is usually done on the hilltops or ridges, because, owing to denudation by ice or water which have bared the bedrock, the outcrops are there more exposed, and thence the lodes are followed down through the alluvial covered plains, partly by their "strike" or "trend," and sometimes by other indicating evidences, which the practical miner has learned to know.

For instance, a lesson in tracing the lode in a grass covered country was taught me many years ago by an old prospector who had struck good gold in the reef at a point some distance to the east of what had been considered the true course. I asked him why he had opened the ground in that particular place. Said he, "Some folks don't use their eyes. You stand here and look towards that claim on the rise where the reef was last struck. Now, don't you see there is almost a track betwixt here and there where the grass and herbage is more withered than on either side? Why? Well, because the hard quartz lode is close to the surface all the way, and there is no great depth of soil to hold the moisture and make the grass grow."

I have found this simple lesson in practical prospecting of use since. But the strike or course of a quartz reef is more often indicated by outcrops, either of the silica itself or ironstone "blows," as the miners call them, but the term is a misnomer, as it argues the easily disproved igneous theory of veins of ejection, meaning thereby that the quartz with its metalliferous contents was thrown out in a molten state from the interior of the earth. This has in no case occurred, and the theory is an impossible one. True lodes are veins of injection formed by the infiltration of silicated waters carrying the metals also in solution. This water filled the fissures caused either by the cooling of the earth's crust, or formed by sudden upheavals of the igneous rocks.

Sometimes in alluvial ground the trend of the reef will be revealed by a track of quartz fragments, more or less thickly distributed on the surface and through the superincumbent soil. Follow these along, and at some point, if the lode be continuous, a portion of its solid mass will generally be found to protrude and can then again be prospected.

There is no rule as to the trend or strike of lodes, except that a greater number are found taking a northerly and southerly course than one which is easterly and westerly. At all events, such is the case in Australia, but it cannot be said that either has the advantage in being more productive. Some of the richest mines in Australasia have been in lodes running easterly and westerly, while gold, tin, and copper, in great quantity and of high percentage to the ton, have been got in such mines as Mount Morgan, Mount Bischoff, and the Burra, where there are no lodes properly so-called at all.

Mount Morgan is the richest and most productive gold mine in Australasia and amongst the best in the world.

Its yield for 1895 was 128,699 oz. of gold, valued at 528,700 pounds. Dividends paid in 1895, 300,000 pounds.

This mine was opened in 1886. Up to May 31, 1897, the total yield was 1,631,981 ozs. of gold, sold at 6,712,187 pounds, from which 4,400,000 pounds have been paid in dividends. (See /Mining Journal/, for Oct. 9, 1897.)

Mount Morgan shareholders have, in other words, divided over 43 1/2 tons of standard gold.

The Burra Burra Mine, about 100 miles from Adelaide, in a direction a little to the east of north, was found in 1845 by a shepherd named Pickett. It is singularly situated on bald hills standing 130 feet above the surrounding country. The ores obtained from this copper mine had been chiefly red oxides, very rich blue and green carbonates, including malachite, and also native copper. The discovery of this mine, supporting, as it did at one time, a large population, marked a new era in the history of the colony. The capital invested in it was 12,320 pounds in 5 pound shares, and no subsequent call was ever made upon the shareholders. The total amount paid in dividends was 800,000 pounds. After being worked by the original owners for some years the mine was sold to a new company, but during the last few years it has not been worked, owing in some degree to the low price of copper and also to the fact that the deposit then being worked apparently became exhausted. For many years the average yield was from 10,000 to 13,000 tons of ore, averaging 22 to 23 per cent of copper. It is stated that, during the twenty-nine and a half years in which the mine was worked, the company expended 2,241,167 in general expenses. The output of ore during the same period amounted to 234,648 tons, equal to 51,622 tons of copper. This, at the average price of copper, amounted to a money value of 4,749,224 pounds. The mine stopped working in 1877.

Mount Bischoff, Tasmania, has produced, since the formation of the Company to December 1895, 47,263 tons of tin ore. It is still in full work and likely to be for years to come.

Each of these immense metalliferous deposits was found outcropping on the summit of a hill of comparatively low altitude. There are no true walls nor can the ore be traced away from the hill in lode form. These occurrences are generally held to be due to hydrothermal or geyser action.

Then again lodes are often very erratic in their course. Slides and faults throw them far from their true line, and sometimes the lode is represented by a number of lenticular (double-pointed in section) masses of quartz of greater or less length, either continuing point to point or overlapping, "splicing," as the miners call it. Such formations are very common in West Australia. All this has to be considered and taken into account when tracing the run of stone.

This tyro also must carefully remember that in rough country where the lode strikes across hills and valleys, the line of the cap or outcrop will apparently be very sinuous owing to the rises and depressions of the surface. Many people even now do not understand that true lodes or reefs are portions of rock or material differing from the surrounding and enclosing strata, and continuing down to unknown depths at varying angles. Therefore, if you have a north and south lode outcropping on a hill and crossing an east and west valley, the said lode, underlying east, when you have traced its outcrop to the lowest point in the valley, between the two hills, will be found to be a greater or less distance, according to the angle of its dip or underlie, to the east of the outcrop on the hill where it was first seen. If it be followed up the next hill it will come again to the west, the amount of apparent deviation being regulated by the height of the hills and depth of the valley.

A simple demonstration will make this plain. Take a piece of half-inch pine board, 2 ft. long and 9 in. wide, and imagine this to be a lode; now cut a half circle out of it from the upper edge with a fret saw and lean the board say at an angle of 45 degrees to the left, look along the top edge, which you are to consider as the outcrop on the high ground, the bottom of the cut being the outcrop in the valley, and it will be seen that the lowest portion of the cut is some inches to the right; so it is with the lode, and in rough country very nice judgment is required to trace the true course.

For indications, never pass an ironstone "blow" without examination. Remember the pregnant Cornish saying with regard to mining and the current aphorism, "The iron hat covers the golden head." "Cousin Jack," put it "Iron rides a good horse." The ironstone outcrop may cover a gold, silver, copper or tin lode.

If you are searching for gold, the presence of the royal metal should be apparent on trial with the pestle and mortar; if silver, either by sight in one of its various forms or by assay, blowpipe or otherwise; copper will reveal itself by its peculiar colour, green or blue carbonates, red oxides, or metallic copper. It is an easy metal to prospect for, and its percentage is not difficult to determine approximately. Tin is more difficult to identify, as it varies so greatly in appearance.

Having found your lode and ascertained its course, you want next to ascertain its value. As a rule (and one which it will be well to remember) if you cannot find payable metal, particularly in gold "reef" prospecting, at or near the surface, it is not worth while to sink, unless, of course, you design to strike a shoot of metal which some one has prospected before you. The idea is exploded that auriferous lodes necessarily improve in value with depth. The fact is that the metal in any lode is not, as a rule, equally continuous in any direction, but occurs in shoots dipping at various angles in the length of the lode, in bunches or sometimes in horizontal layers. Nothing but actual exploiting with pick, powder, and brains, particularly brains, will determine this point.

Where there are several parallel lodes and a rich shoot has been found in one and the length of the payable ore ascertained, the neighbouring lodes should be carefully prospected opposite to the rich spot, as often similar valuable deposits will thus be found. Having ascertained that you have, say, a gold reef payable at surface and for a reasonable distance along its course, you next want to ascertain its underlie or dip, and how far the payable gold goes down.

As a general rule in many parts of Australia--though by no means an inflexible rule--a reef running east of north and west of south will underlie east; if west of north and east of south it will go down to the westward and so round the points of the compass till you come to east and west; when if the strike of the lodes in the neighbourhood has come round from north-east to east and west the underlie will be to the south; if the contrary was the case, to the north. It is surprising how often this mode of occurrence will be found to obtain. But I cannot too strongly caution the prospector not to trust to theory but to prove his lode and his metal by following it down on the underlie. "Stick to your gold" is an excellent motto. As a general thing it is only when the lode has been proved by an underlie shaft to water level and explored by driving on its course for a reasonable distance that one need begin to think of vertical shafts and the scientific laying out of the mine.

A first prospecting shaft need not usually be more than 5 ft. by 3 ft. or even 5 ft. by 2 ft. 6 in., particularly in dry country. One may often see in hard country stupid fellows wasting time, labour, and explosives in sinking huge excavations as much as 10 ft. by 8 ft. in solid rock, sometimes following down 6 inches of quartz.

When your shaft is sunk a few feet, you should begin to log up the top for at least 3 ft. or 4 ft., so as to get a tip for your "mullock" and lode stuff. This is done by getting a number of logs, say 6 inches diameter, lay one 7 ft. log on each side of your shaft, cut two notches in it 6 ft. apart opposite the ends of the shaft, lay across it a 5 ft. log similarly notched, so making a frame like a large Oxford picture frame. Continue this by piling one set above another till the desired height is attained, and on the top construct a rough platform and erect your windlass. If you have an iron handle and axle I need not tell you how to set up a windlass, but where timber is scarce you may put together the winding appliance described in the chapter headed "Rules of Thumb."

If you have "struck it rich" you will have the pleasure of seeing your primitive windlass grow to a "whip, a "whim," and eventually to a big powerful engine, with its huge drum and Eiffel tower-like "poppet heads," or "derrick," with their great spindle pulley wheels revolving at dizzy speed high in air.

"How shall I know if I have payable gold so as to save time and trouble in sinking?" says the novice. Truly it is a most important part of the prospector's art, whether he be searching for alluvial or reef gold, stream or lode tin, copper, or other valuable metal.

I presume you know gold when you see it?

If you don't, and the doubtful particle is coarse enough, take a needle and stick the point into the questionable specimen. If gold the steel point will readily prick it; if pyrites or yellow mica the point will glance off or only scratch it.

The great importance of the first prospect from the reef is well shown by the breathless intensity with which the two bearded, bronzed pioneer prospectors in some trackless Australian wild bend over the pan in which the senior "mate" is slowly reducing the sample of powdered lode stuff. How eagerly they examine the last pinch of "black sand" in the corner of the dish. Prosperity and easy times, or poverty and more "hard graft" shall shortly be revealed in the last dexterous turn of the pan. Let us hope it is a "pay prospect."

The learner, if he be far afield and without appliances of any kind, can only guess his prospect. An old prospector will judge from six ounces of stuff within a few pennyweights what will be the yield of a ton. I have seen many a good prospect broken with the head of a pick and panned in a shovel, but for reef prospecting you should have a pestle and mortar. The handiest for travelling is a mortar made from a mercury bottle cut in half, and a not too heavy wrought iron pestle with a hardened face. To be particular you require a fine screen in order to get your stuff to regulated fineness. The best for the prospector, who is often on the move, is made from a piece of cheesecloth stretched over a small hoop.

If you would be more particular take a small spring balance or an improvised scale, such as is described in Mr. Goyder's excellent little book, p. 14, which will enable you to weigh down to one- thousandth of a grain. It is often desirable to burn your stone before crushing, as it is thus more easily triturated and will reveal all its gold; but remember, that if it originally contained much pyrites, unless a similar course is adopted when treated in the battery, some of the gold will be lost in the pyrites.

Having crushed your gangue to a fine powder you proceed to pan it off in a similar manner to that of washing out alluvial earth, except that in prospecting quartz one has to be much more particular, as the gold is usually finer. The pan is taken in both hands, and enough water to cover the prospect by a few inches is admitted. The whole is then swirled round, and the dirty water poured off from time to time till the residue is clean quartz sand and heavy metal. Then the pan is gently tipped, and a side to side motion is given to it, thus causing the heavier contents to settle down in the corner. Next the water is carefully lapped in over the side, the pan being now tilted at a greater angle until the lighter particles are all washed away. The pan is then once more righted, and very little water is passed over the pinch of heavy mineral a few times, when the gold will be revealed in a streak along the bottom. In this operation, as in all others, only practice will make perfect, and a few practical lessons are worth whole pages of written instruction.

To make an amalgamating assay that will prove the amount of gold which can be got from a ton of your lode, take a number of samples from different parts, both length and breadth. The drillings from the blasting bore-holes collected make the best test. When finely triturated weigh off one or two pounds, place in a black iron pan (it must not be tinned), with 4 ozs. of mercury, 4 ozs. salt, 4 ozs. soda, and about half a gallon of boiling water; then, with a stick, stir the pulp constantly, occasionally swirling the dish as in panning off, till you feel certain that every particle of the gangue has come in contact with the mercury; then carefully pan off into another dish so as to lose no mercury. Having got your amalgam clean squeeze it through a piece of chamois leather, though a good quality of new calico previously wetted will do as well. The resulting pill of hard amalgam can then be wrapped in a piece of brown paper, placed on an old shovel, and the mercury driven off over a hot fire; or a clay tobacco pipe, the mouth being stopped with clay, makes a good retort (see "Rules of Thumb," pipe and potato retorting). The residue will be retorted gold, which, on being weighed and the result multiplied by 2240 for a 1 lb. assay, or by 1120 for 2 lb., will give the amount of gold per ton which an ordinary battery might be expected to save. Thus 1 grain to the pound, 2240 lbs. to the ton, would show that the stuff contained 4 oz. 13 dwt. 8 gr. per ton.

If there should be much base metal in your sample such as say stibnite (sulphide of antimony), a most troublesome combination to the amalgamator--instead of the formula mentioned above add to your mercury about one dwt. of zinc shavings or clippings, and to your water sufficient sulphuric acid to bring it to about the strength of vinegar (weaker, if anything, not stronger), place your material preferably in an earthenware or enamelled basin if procurable, but iron will do, and intimately mix by stirring and shaking till all particles have had an opportunity to combine with the mercury. Retort as before described. This device is my own invention.

The only genuine test after all is the battery, and that, owing to various causes, is often by no means satisfactory. First, there is a strong, almost unconquerable temptation to select the stone, thus making the testing of a few tons give an unduly high average; but more often the trouble is the other way. The stuff is sent to be treated at some inefficient battery with worn-out boxes, shaky foundations, and uneven tables, sometimes with the plates not half amalgamated, or coated with impurities, the whole concern superintended by a man who knows as little about the treatment of auriferous quartz by the amalgamating or any other processes as a dingo does of the differential calculus. Result: 3 dwt. to the ton in the retort, 30 dwt. in the tailings, and a payable claim declared a "duffer."

When the lode is really rich, particularly if it be carrying coarse gold, and owing to rough country, or distance, a good battery is not available, excellent results in a small way may be obtained by the somewhat laborious, but simple, process of "dollying." A dolly is a one man power single stamp battery, or rather an extra sized pestle and mortar (see "Rules of Thumb").

Silver lodes and lodes which frequently carry more or less gold, are often found beneath the dark ironstone "blows," composed of conglomerates held together by ferric and manganic oxides; or, where the ore is galena, the surface indications will frequently be a whitish limey track sometimes extending for miles, and nodules or "slugs" of that ore will generally be found on the surface from place to place. Most silver ores are easily recognisable, and readily tested by means of the blowpipe or simple fire assay. Sometimes the silver on being tested is found to contain a considerable percentage of gold as in the great Comstock lode in Nevada. Ore from the big Broken Hill silver load, New South Wales, also contains an appreciable quantity of the more precious metal. A natural alloy of gold containing 20 per cent silver, termed electrum, is the lowest grade of the noble metal.

Tin, lode, and stream, or alluvial, occurs only as an oxide, termed cassiterite, and yet you can well appreciate the compliment one Cornish miner pays to another whose cleverness he wishes to commend, when he says of him, "Aw, he do know tin," when you look at a representative collection of tin ores. In various shapes, from sharp- edged crystals to mammillary-shaped nuggets of wood-tin; from masses of 30 lbs. weight to a fine sand, like gunpowder, in colour black, brown, grey, yellow, red, ruby, white, and sometimes a mingling of several colours, it does require much judgment to know tin.

Stream tin is generally associated with alluvial gold. When such is the case there is no difficulty in saving the gold if you save the tin, for the yellow metal is of much greater specific gravity. As the natural tin is an oxide, and therefore not susceptible to amalgamation, the gold can be readily separated by means of mercury.

Lode tin sometimes occurs in similar quartz veins to those in which gold is got, and is occasionally associated with gold. Tin is also found, as at Eurieowie, in dykes, composed of quartz crystals and large scales of white mica, traversing the older slates. A similar occurrence takes place at Mount Shoobridge and at Bynoe Harbour, in the Northern Territory of South Australia; indeed, one could not readily separate the stone from these three places if it were mixed. As before stated tin will never be found far from granite, and that granite must have white mica as one of its constituents. It is seldom found in the darker coloured rocks, or in limestone country, but it sometimes occurs in gneiss, mica schist, and chlorite schist. Numerous other minerals are at times mistaken for tin, the most common of which are tourmaline or schorl, garnet, wolfram (which is a tungstate of iron with manganese), rutile or titanic acid, blackjack or zinc blende, together with magnetic, titanic, and specular iron in fine grains.

This rough and ready mode of determining whether the ore is tin is by weight and by scratching or crushing, when, what is called the "streak" is obtained. The colour of the tin streak is whitey-grey, which, when once known, is not easily mistaken. The specific gravity is about 7.0. Wolfram, which is most like it, is a little heavier, from 7.0 to 7.5, but its streak is red, brown, or blackish-brown. Rutile is much lighter, 4.2, and the streak light-brown; tourmaline is only 3.2. Blackjack is 4.3, and its streak yellowish-white.

I have seen several pounds weight to the dish got in some of the New South Wales shallow sinking tin-fields, and, as a rule, payable gold was also present. Fourteen years ago I told Western Australian people, when on a visit to that colony, that the neighbourhood of the Darling range would produce rich tin. Lately this had been proved to be the case, and I look forward to a great development of the tin mining industry in the south-western portion of Westralia.

The tin "wash" in question may also contain gold, as the country rock of the neighbourhood is such as gold is usually found in.[*]

[*] Since this book was in the printers' hands, the discovery of payable gold has been reported from this district. A detailed discussion of methods of prospecting will be found in chapter ii. Of Le Neve Foster's "Ore and Stone Mining," and Mr. S. Herbert Cox's "Handbook for Prospectors."


Getting Gold Contents Next Chapter
GETTING GOLD
CHAPTER II

GOLD PROSPECTING -- ALLUVIAL AND GENERAL

It is purposed in this chapter to deal specially with the operation of searching for valuable mineral by individuals or small working parties.
It is well known that much disappointment and loss accrue through lack of knowledge by prospectors, who with all their enterprise and energy are often very ignorant, not only of the probable locality, mode of occurrence, and widely differing appearance of the various valuable minerals, but also of the best means of locating and testing the ores when found. It is for the information of such as these that this chapter is mainly intended, not for scientists or miners of large experience.

All of us who have had much to do with mining know that the majority of the best mineral finds have been made by the purest accident; often by men who had no mining knowledge whatever; and that many valuable discoveries have been delayed, or, when made, abandoned as not payable, from the same cause--ignorance of the rudiments of mineralogy and mining. I have frequently been asked by prospectors, when inspecting new mineral fields, what rudimentary knowledge will be most useful to them and how it can be best obtained.

If a man can spare the time a course of lessons at some accredited school of mines will be, undoubtedly, the best possible training; but if he asks what books he should read in order to obtain some primary technical instruction, I reply: First, an introductory text-book of geology, which will tell him in the simplest and plainest language all he absolutely requires to know on this important subject. Every prospector should understand elementary geology so far as general knowledge of the history of the structure of the earth's crust and of the several actions that have taken place in the past, or are now in operation, modifying its conditions. He may with advantage go a few steps further and learn to classify the various formations into systems, groups, and series: but he can acquire all that he need absolutely know from this useful little 2s. 6d. book. Next, it is advisable to learn something about the occurrence and appearance of the valuable minerals and the formations in which they are found. For all practical purposes I can recommend Cox and Ratte's "Mines and Minerals," one of the Technical Education series of New South Wales, which deals largely with the subject from an Australian standpoint, and is therefore particularly valuable to the Australian miner, but which will be found applicable to most other gold-bearing countries. I must not, however, omit to mention an admirably compiled /multum in parvo/ volume prepared by Mr. G. Goyder, jun., Government Assayer and Assay Instructor at the School of Mines, Adelaide. It is called the "Prospectors' Pocketbook," costs only one shilling, is well bound, and of handy size to carry. In brief, plain language it describes how a man, having learned a little of assaying, may cheaply provide himself with a portable assay plant, and fluxes, and also gives considerable general information on the subject of minerals, their occurrence and treatment.[*]

[*] Another excellent and really practical book is Prof. Cole's "Practical Aids in Geology" (second edition), 10s. 6d.

It may here be stated that some twelve years ago I did a large amount of practical silver assaying on the Barrier (Broken Hill), which was not then so accessible a place as it is now, and got closely correct results from a number of different mines, with an extemporised plant almost amusing in its simplicity. All I took from Adelaide were a small set of scales capable of determining the weight of a button down to 20 ozs. to the ton, a piece of cheese cloth to make a screen or sieve, a tin ring 1 l/2 in. diameter, by 1/2 in. high, a small brass door knob to use as a cupel mould, and some powdered borax, carbonate of soda, and argol for fluxes; while for reducing lead I had recourse to the lining of a tea-chest, which lead contains no silver--John Chinaman takes good care of that. My mortar was a jam tin, without top or bottom, placed on an anvil; the pestle a short steel drill. The blacksmith at Mundi Mundi Station made me a small wrought iron crucible, also a pair of bent tongs from a piece of fencing-wire. The manager gave me a small common red flower pot for a muffle, and with the smith's forge (the fire built round with a few blocks of talcose schist) for a furnace, my plant was complete. I burned and crushed bones to make my bone-dust for cupelling, and thus provided made nearly forty assays, some of which were afterwards checked in Adelaide, in each instance coming as close as check assays generally do. Nowadays one can purchase cheaply a very effective portable plant, or after a few lessons a man may by practice make himself so proficient with the blowpipe as to obtain assay results sufficiently accurate for most practical purposes.

Coming then to the actual work of prospecting. What the prospector requires to know is, first, the usual locality of occurrence of the more valuable minerals; secondly, their appearance; thirdly, a simple mode of testing. With respect to occurrence, the older sandy and clay slates, chlorite slates, micaceous, and hornblendic schists, particularly at or near their junction with the intrusive granite and diorite, generally form the most likely geological country for the finding of mineral lodes, particularly gold, silver and tin. But those who have been engaged in practical mining for long, finding by experience that no two mineral fields are exactly alike in all their characteristics, have come to the conclusion that it is unwise to form theories as to why metals should or should not be found in certain enclosing rocks or matrices. Some of the best reef gold got in Victoria has been obtained in dead white, milky-looking quartz almost destitute of base metal. In South Australia reef gold is almost invariably associated with iron, either as oxide, as "gossan;" or ferruginous calcite, "limonite;" or granular silica, conglomerated by iron, the "ironstone" which forms the capping or outcrop of many of our reefs, and which is often rich in gold.

But to show that it is unsafe to decide off-hand in what class of matrix metals will or will not be found, I may say that in my own experience I have seen payable gold in the following materials:--

Quartz, dense and milky, also in quartz of nearly every colour and appearance, saccharoidal, crystalline, nay, even in clear glass-like six-sided prismatic crystals, and associated with silver, copper, lead, arsenic, iron as sulphide, oxide, carbonate, and tungstate, antimony, bismuth, nickel, zinc, lead, and other metals in one form or another; in slate, quartzite, mica schist, granite, diorite, porphyry, felsite, calcite, dolomite, common carbonate of iron, siliceous sinter from a hot spring, as at Mount Morgan; as alluvial gold in drifts formed of almost all these materials; and once, perhaps the most curious matrix of all, a small piece of apparently alluvial gold, naturally imbedded in a shaly piece of coal. This specimen, I think, is in the Sydney Museum. One thing, however, the prospector may make sure of: he will always find gold more or less intimately associated with silica (Quartz) in one or other of its many forms, just as he will always find cassiterite (oxide of tin) in the neighbourhood of granite containing muscovite (white mica), which so many people will persist in terming talc. It is stated to be a fact that tin has never been found more than about two miles from such granite.

From what has been said of its widely divergent occurrences it will be admitted that the Cornish miners' saying with regard to metals generally applies with great force to gold: "Where it is, there it is": and "Cousin Jack" adds, with pathetic emphasis, "and where it is generally, there I ain't."

I have already spoken of the geological "country rock" in which red gold is most likely to be discovered--i.e., the junction of the slates and schists with the igneous or metamorphic (altered) rocks, or in this vicinity. Old river beds formed of gravelly drifts in the same neighbourhood may probably contain alluvial gold, or shallow deposits of "wash" on hillsides and in valleys will often carry good surface gold. This is sometimes due to the denudation, or wearing away, of the hills containing quartz-veins--that is, where the alluvial gold really was derived from such veins, which, popular opinion to the contrary, is not always the case.

Much disappointment and loss of time and money may sometimes be prevented if prospectors will realise that /all/ alluvial gold does not come from the quartz veins or reefs; and that following up an alluvial lead, no matter how rich, will not inevitably develop a payable gold lode. Sometimes gold, evidently of reef origin, is found in the alluvial; but in that case it is generally fine as regards the size of the particles, more or less sharp-edged, or crystalline in form if recently shed; while such gold is often of poorer quality than the true alluvial which occurs in mammillary (breast-like) nuggets, and is of a higher degree of purity as gold.

The ordinary non-scientific digger will do well to give credence to this view of the case, and will often thereby save himself much useless trouble. Sometimes also the alluvial gold, coarser in size than true reef-born alluvial, is derived almost /in situ/ from small quartz "leaders," or veins, which the grinding down of the face of the slates has exposed; these leaders in time being also broken and worn, set free the gold they have contained, which does not, as a rule, travel far, but sometimes becomes water-worn by the rubbing over it of the disintegrated fragments of rock.

But the heavy, true alluvial gold, in great pure masses, mammillary, or botryoidal (like a bunch of grapes) in shape, have assuredly been formed by accretion on some metallic base, from gold salts in solution, probably chloride, but possibly sulphide.

Nuggets, properly so-called, are never found in quartz lodes; but, as will be shown later, a true nugget having all the characteristics of so-called water-worn alluvial may be artificially formed on a small piece of galena, or pyrites, by simply suspending the base metal by a thread in a vessel containing a weak solution of chloride of gold in which a few hard-wood chips are thrown.

Prospecting for alluvial gold at shallow depths is a comparatively easy process, requiring no great amount of technical knowledge. Usually the first gold is got at or near the surface and then traced to deep leads, if such exist.

At Mount Brown Goldfield, N.S.W., in 1881, I saw claimholders turning out to work equipped only with a small broom made of twigs and a tin dish. With the broom they carefully swept out the crevices of the decomposed slate as it was exposed on the surface, and putting the resulting dust and fragments into the tin dish proceeded to dry blow it.

The /modus operandi/ is as follows: The operator takes the dish about half full of dirt, and standing with his back or side to the wind, if there be any, begins throwing the stuff up and catching it, or sometimes slowly pouring it from one dish to another, the wind in either case carrying away the finer particles. He then proceeds to reduce the quantity by carefully extracting the larger fragments of rock, till eventually he has only a handful or so of moderately fine "dirt" which contains any gold there may be. If in good sized nuggets it is picked out, if in smaller pieces or fine grains the digger slowly blows the sand and dust aside with his breath, leaving the gold exposed. This process is both tedious and unhealthy, and of course can only be carried out with very dry surface dirt. The stuff in which the gold occurred at Mount Brown was composed of broken slate with a few angular fragments of quartz. Yet, strange to say, the gold was invariably waterworn in appearance.

Dry blowing is now much in vogue on the West Australian fields owing to the scarcity of water; but the great objection is first, the large amount of dust the unfortunate dry blower has to carry about his person, and secondly, that the peck of dirt which is supposed to last most men a life time has to be made a continuous meal of every day.

For wet alluvial prospecting the appliances, besides pick and shovel, are puddling tub, tin dish, and cradle; the latter, a man handy with tools can easily make for himself.

In sinking, the digger should be careful to avoid making his shaft inconveniently small, and not to waste his energy by sinking a large "new chum" hole, which usually starts by being about three times too large for the requirements at the surface, but narrows in like a funnel at 10 feet or less. A shaft, say 4 feet by 2 feet 6 inches and sunk plumb, the ends being half rounded, is large enough for all requirements to a considerable depth, though I have seen smart men, when they were in a hurry to reach the drift, get down in a shaft even less in size.

The novice who is trying to follow or to find a deep lead must fully understand that the present bed of the surface river may not, in fact seldom does, indicate the ancient watercourses long since buried either by volcanic or diluvial action, which contain the rich auriferous deposits for which he is seeking; and much judgment and considerable underground exploration are often required to decide on the true course of leads. Only by a careful consideration of all the geological surroundings can an approximate idea be obtained from surface inspection alone; and the whole probable conditions which led to the present contour of the country must be carefully taken into account.

How am I to know the true bottom when I see it? asks the inexperienced digger. Well, nothing but long experience and intelligent observation will prevent mistakes at times, particularly in deep ground; but as a general rule, though it may sound paradoxical, you may know the bottom by the top.

That is, we will assume you are sinking in, say, 10 to 12 feet ground in a gully on the bank of which the country rock is exposed, and is, say, for instance, a clay slate or sandy slate set at a certain angle; then, in all probability, unless there be a distinct fault or change in the country rock between the slate outcrop and your shaft, the bottom will be a similar slate, standing at the same angle; and this will very probably be overlaid by a deposit of pipeclay, formed by the decomposition of the slates.

From the crevices of these slates, sometimes penetrating to a considerable distance, you may get gold, but it is useless attempting to sink through them. If the outcropping strata be a soft calcareous (limy) sandstone or soft felspathic rock, and that be also the true bottom, great care should be exercised or one is apt to sink through the bottom, which may be very loose and decomposed. I have known mistakes made in this way when many feet have been sunk, and driven through what was actually bed rock, though so soft as to deceive even men of experience. The formation, however, must be the guide, and except in some specially difficult cases, a man can soon tell when he is really on bed rock or "bottom."

On an alluvial lead the object of every one is to "get on the gutter," that is, to reach the lowest part of the old underground watercourse, through which for centuries the gold may have been accretionising from the percolation of the mineral-impregnated water; or, when derived from reefs or broken down leaders, the flow of water has acted as a natural sluice wherein the gold is therefore most thickly collected. Sometimes the lead runs for miles and is of considerable width, at others it is irregular, and the gold-bearing "gutter" small and hard to find. In many instances, for reasons not readily apparent, the best gold is not found exactly at the lowest portion of these narrow gutters, but a little way up the sides. This fact should be taken into consideration in prospecting new ground, for many times a claim has been deserted after cleaning up the "bottom," and another man has got far better gold considerably higher up on the sides of the gutter. For shallow alluvial deposits, where a man quickly works out his 30 by 30 feet claim, it may be cheaper at times to "paddock" the whole ground-- that is, take all away from surface to bottom, but if he is in wet ground and he has to drive, great care should be taken to properly secure the roof by means of timber. How this may best be done the local circumstances only can decide.


Getting Gold Contents Next Chapter